
Armagedroid, APKs Static Analyzer Software

Luis Enrique Héctor Almaraz García, Eleazar Aguirre Anaya,

Ponciano Jorge Escamilla Ambrosio, Raúl Acosta Bermejo

Instituto Politécnico Nacional, Centro de Investigación en Computación, CDMX,

Mexico

lalmarazg1400@alumno.ipn.mx, eaguirre@cic.ipn.mx,

pescamilla@cic.ipn.mx, racostab@ipn.mx

Abstract. Armagedroid, a software for static analysis of Android APKs, arises

with the objective of assisting in the decision making by the user analyst, who

must evaluate, thanks to the metadata obtained by the program, if it is a reliable

package or a possible malware application, automating the procedures involved

in this type of analysis. Consistent phases of the Armagedroid analysis consider

the APK structure, its contents, its manifest file to extract the package,

permissions and archive activities using action modules. The result obtained

with the use of the tool is the gathered information from each module applied to

a benign APK and one with malware, which, once compared, distinguish that

the malicious package requests more permissions than the trusted APK and

with just having an activity. The contributions of Armagedroid in comparison

with other programs of static analysis are: the validation that the file loaded in

memory is really an APK, checking its size, obtaining its content and

generating the analysis report of the APK which consists of the information of

the metadata obtained from the APK: the name, size in bytes, integrity

checksums, which are MD5, SHA1 and SHA256, APK content , information of

the files it contains, the name of the package, the list of activities and

permissions of the APK in order to make the results known to the user.

Keywords: APKs, Android, mobiles, applications, static analysis, malware,

software.

1 Introduction

The rise of the Internet and recently the Internet of Things, it is estimated that there

are about 19 billion digital devices connected to it [1], has led to the growth of

malware development by cybercriminals, to pursue certain purposes, mainly: data

theft, cybercrime, espionage and hacktivism. Each quarter of 2016 found 600 million

new samples of malware [2]. Currently, there is malware for all operating systems of

personal computers like Windows, Linux and MacOS, to mention a few examples, but

also malware has been developed for operating systems of mobile devices, the most

attacked are Android and iOS [3].

99

ISSN 1870-4069

Research in Computing Science 138 (2017)pp. 99–108; rec. 2017-09-24; acc. 2017-10-26

mailto:lalmarazg1400@alumno.ipn.mx
mailto:pescamilla@cic.ipn.mx

Malware analysts on different platforms employ 2 types of malware analysis, static

analysis and dynamic analysis. Static analysis identifies cryptographic hashes,

fingerprints and metadata for a malware, while in the dynamic analysis malware

execution is performed to study its behavior [4].

Android has become the operating system mostly used by smartphones, tablets,

watches, smart TVs and even some vehicles, so it has caught the attention of

malicious attackers to develop malware and take advantage of its users. A new

Android application with malware is discovered every 10 seconds [5], it is estimated

that by the end of this year 2017, the number of malware for this operating system

will reach 3,500,000 samples [5]. These applications are formed by a variant of the

Java JAR format, which is called APK [6]. An APK file contains the necessary

resources for the installation of APPS, specifically: the manifest file

(AndroidManifest.xml), the executable code (classes.dex) the compiled resources of

the application (resources.arsc) and the directories of the application.

This paper describes a new approach called Armagedroid that performs the

functions of a static analysis, obtaining: package name, size in bytes, integrity check

sums, the hash functions MD5, SHA1 and SHA256, APK content, the files it

contains, such as comments on them, last modified date, operating system in which

they were created, ZIP version used to compress them, their size once they have been

compressed and decompressed, the list of activities and permissions of the APK. The

development of Armagedroid allows a user to automate the tasks of performing the

static analysis of Android APKs that comprises the process of decompilation of the

APK, the extraction of its metadata, its directories and files.

The remaining of this document is organized as follows: Section 2 defines the main

concepts related to APKs: Android manifest file, package name, permissions, and

packaging activities. The existing related works about static analysis of APKs are

described in section 3, the phases of the software they developed and the results

obtained. The description of the modules of Armagedroid static analysis are presented

in section 4, which range from loading the APK, validating it, calculating its integrity

checksums, obtaining its contents, decompiling its resources, reading the file of the

packaging and the generation of the static analysis report. In section 5 the tests and

results obtained by applying the developed software on a benign application and on a

malicious APK are presented. Section 6 presents the conclusions reached in the

implementation and use of the software, as well as the future scope regarding the

improvement of the tool.

2 Android ApPlication PacKages

Applications are distributed and installed in the form of packaged application files,

called APKs. They are containers that include the code and the resources of the

application, as well as the manifest file (containing the permissions of the app).

APK is an extension of the JAVA JAR format, which in turn is an extension of the

ZIP format. The contents of an AKP are presented in Table 1 [7].

100

Luis Enrique Héctor Almaraz García, Eleazar Aguirre Anaya, et al.

Research in Computing Science 138 (2017) ISSN 1870-4069

Table 1. Contents of an APK and its description.

Content of an APK Description

AndroidManifest.x

ml

Declares the name of the application package, its version,

activities, services, message receivers and content providers

that integrate it [8].

Classes.dex
Contains the executable code of the application in Dalvik VM

format which is the file with extension .dex.

Resources.arsc
It has compiled application resources such as strings and

styles.

Assets directory
It stores unprocessed resources, i.e. those that at the time of

generating the APK retain their name and characteristics,

Lib directory
This directory is present in applications that use native

libraries via JNI (Java Native Interface).

Res directory

Group resources that are directly referenced from the Android

code, either directly using the android.content.res.Resources

class or indirectly through the high-level APIs, they are split

into separate subdirectories for each type of resource

(animations, images, menu definitions, etc.).

META-INF dir. It hosts the package manifest file and signature code.

2.1 Package that Contains the Android Application

It is the file that works as a unique identifier for the application and contains the

classes that implement a specific function once the APK is installed [9]. The example

of announcing a package is shown in Fig. 1, see that it begins with the <manifest

package = tag and the name of the package in quotation marks with its tag close >.

1. <manifest package=”com.example.project”>

2. ...

3. </manifest>

Fig. 1. Declaration of a package in an APK.

2.2 Permissions on Android for APKs

They define the access rights of the apps to the resources of the device to perform an

action, they can be used to access the hardware, to obtain connectivity to the Internet,

to use data of the user or the services of security, memory and processes. Once

installed the apps request these permissions through the file [10]. The declaration of a

permission is shown in Fig. 2, it should be noted that, in its construction, they start

with the label <uses-permission android: name = followed by the name of the

permission to which the app must access, finally the label is closed with >.

101

Armagedroid, APKs Static Analyzer Software

Research in Computing Science 138 (2017)ISSN 1870-4069

1. <manifest

xmlns:android=”http://schemas.android.com/apk/res

/android”

2. package=”com.android.app.myapp” >

3. <uses-permission

android:name=”android.permission.RECEIVE_SMS” />

4 ...

5. </manifest>

Fig. 2. Declaration of a permit in an APK.

2.3 Activities of an APK

An activity is a component of the application that contains the screens that are

presented to the user to interact and perform an action on it, thanks to the methods it

implements. The APK developer encodes an activity for each window that is shown

to the user.

All activities are declared in the AndroidManifest.xml file to be accessed by the

application [11]. Fig. 3 shows the declaration of an activity is done by adding an

element <activity Android: name plus the name of the activity in quotation marks and

the closing of the element with >.

1. <manifest ...>

2. <application ...>

3. <activity android:name=”.ExampleActivity”/>

4. ...

5. </application>

6. ...

7. </manifest>

Fig. 3. Declaration of an activity in an APK.

3 Works Related to Static Analysis APKs

There have been several publications related to using computational tools to perform

static analysis and dynamic analysis in the APKs, however, the focus of this

document and the Armagedroid software takes only static analysis as a reference.

A program that performs static analysis extracting the most relevant features of an

Android application [12] is performed by means of 4 stages: The first one involves

obtaining the APK and decompressing it through APKTool, stage 2 is responsible for

extracting the characteristics of the application through the manifest file

(AndroidManifest.xml), taking into consideration the actions That request other

actions of the different components of the application and also in the categories which

contain additional information on the type of component that action must handle, in

addition the software considers the permissions of the application, it is assigned a

102

Luis Enrique Héctor Almaraz García, Eleazar Aguirre Anaya, et al.

Research in Computing Science 138 (2017) ISSN 1870-4069

category to the APK Analyzed in stage 3, according to a classification that the authors

previously made with the largest number of permissions present in several

applications and in stage 4 the user gives an assessment on the characteristics

obtained on the APK and the category that will be assigned. The results that they

obtained after analyzing several APKs were a list of categories: communications,

games, social networks, utilities, education, multimedia, widgets and trips.

At the University of Technology, they developed a framework that detects malware

in Android applications. They use the concept of machine-learning monitoring the

permissions of the application and events, in this way, the machine-learning classifier

is fed through 4 phases, the first is responsible for extracting the permissions

requested by the APK, the second uses the clustering algorithm K-Means to provide

information to the classifier, with the permits obtained before, the third phase applies

decision tree algorithms to determine if the APK is malware or is benign and in the

fourth phase evaluates the accuracy and accuracy of classification by means of true

positive, false positive, true negative, false negative, and general accuracy formulas.

They obtained 2 sets of data that differentiate between a malware APK and a benign

one, the database was composed of a total of 500 malware APK features, which were

extracted [13].

At the University of Luxembourg, authors used a set of 50,000 Android

applications to feed a machine-learning that classifies a group of features for malware

detection [14]. Firstly, the classifier is fed to the classifier with 2 types of sets, the set

of APKs obtained from Google Play with a module of the program that is responsible

for downloading them and the set of APKs with malware. They take the APK to

analyze from which their permissions are obtained, a prediction is obtained thanks to

the algorithms of RandomForest, J48, JRip and LibSVM, which, with the support of

the characteristics of the machine-learning information, informs if the APK is

malware or benign, together with the support of VirusTotal. As results obtained a

classification accuracy radius with mean values of 0.94, this implies a better

probability to differentiate between benign and malignant APKs.

4 Armagedroid System Modules

This section details the construction and operation of Armagedroid modules. The

overview of its components can be seen in Fig, 4 which describes that the software

currently has 7 modules of static analysis, which range from loading the APK into

memory, validating it, calculating checksums integrity, obtaining information from its

contents, Table 1, decompiling, reading the file AndroidManifest.xml and generating

the static analysis report.

a) Module of loading APK in memory: It is the first phase of the analysis, the user

selects the APK between their files; this is possible with the module of loading APK

in memory.

b) Module of validating APK: A feature that Armagedroid has before executing the

following phases of static analysis is to ensure that the selected file, in the previous

103

Armagedroid, APKs Static Analyzer Software

Research in Computing Science 138 (2017)ISSN 1870-4069

phase, is really an APK, for this, it observes the structure of the same and within its

content looks for the magic number of the packaging. The magic number of a file is a

numeric value that identifies it and associates it with a certain format. In the case of

APKs, the magic number is the value represented in hexadecimal as "PK \ x3 \ x4",

see the structure of an APK in Fig. 5. If the file does not contain this value, then

Armagedroid stops the analysis informing the user that the file is not APK, otherwise,

proceed to calculate the size of the it and the condition at this time to continue with

the analysis is to calculate its size in bytes, if it turns out to be 0 bytes, the analysis

stops and the user is told that the APK size does not allow the analysis.

Fig. 4. Modules of Armagedroid analysis.

c) Module of APK Integrity Checksum Calculation: As shown in Fig. 4, the

system determines 3 integrity check sums of the APK: MD5, SHA1, and SHA256

using the Integrity Checksum calculation module, it uses methods of the Python

language, in its version 3, with which the system was implemented, included in the

hashlib library, these are: hashlib.md5(), hashlib.sha1() and hashlib.256()

respectively, each one receives as input the byte set of the APK, Fig. 5, outputting a

128-bit alphanumeric string for MD5, 160 bits for SHA1 and 256 bits for SHA256.

d) Module of obtaining the content of the APK: This module obtains the contents

of the same one, the packaging contains the files of the Table 1 and of each one of

them are extracted: comments on the same, its last date of modification, operating

system in which they were created, version of the used ZIP to compress them, their

size once they have been compressed and decompressed. Armagedroid takes this data

informing the user analyst what the content of the APK, thus favoring the execution

of the module of obtaining its content without the need to add a decompression

function of it.

e) Module of APK decompilation: It uses the APKTool component for the APK

decompilation task, reading the decoded AndroidManifest.xml and obtaining the

name of the package, the permissions and activities corresponding to it, in the later

stages of the analysis. It results in a directory with the name of the APK and the

decompiled files in Table 1, if APKTool is not used, the files would not be readable.

104

Luis Enrique Héctor Almaraz García, Eleazar Aguirre Anaya, et al.

Research in Computing Science 138 (2017) ISSN 1870-4069

f) Module of AndroidManifest.xml file reading: Reading module is responsible for

reading the Android manifest file, previously decoded, extracting the package name

from the APK, also gets the permissions and activities that compose it. The software

uses regular expressions to find the format in which the 3 elements are found before

the determination and thus their values, in the figures 1, 2 and 3 the declarations of a

package, a permission and an activity are described respectively.

Fig. 5. Structure of an APK.

g) Module of APK static analysis report generation: In its last execution,

Armagedroid performs a report in .txt file format containing the metadata obtained

from the APK: the name, size in bytes, checksum integrity checksums, which are

MD5, SHA1 and SHA256, APK content , information of the files it contains, such as

comments on them, last modified date, operating system in which they were created,

ZIP version used to compress them, their size once they have been compressed and

decompressed, also included name the package, the list of activities and permissions

of the APK, this task is performed by the module of generation of the report of static

analysis of the APK.

5 Tests and Results

Armagedroid software was tested with 2 APKs, one of which corresponds to a video

game of ships that destroy asteroids called Asteroides.apk and the second one is

malware, with the name badapk.apk, the purpose of analyzing these 2 APKs is to

105

Armagedroid, APKs Static Analyzer Software

Research in Computing Science 138 (2017)ISSN 1870-4069

know the scope that would have each one in the device once installed. Table 2 shows

the hardware and software features used for running Armagedroid.

Table 2. Hardware and software features used for running Armagedroid.

Software

Operating System
Kali Linux 2017.1

Architecture 32 bits

Programming language Python 3

Hardware

RAM memory 3.8 Gb

Processor
Intel® Pentium(R) CPU N3520 @

2.16GHz × 4

HDD 26.1 GB

Fig. 6. Permissions and activities from the APK Asteroides.apk.

Fig. 7. Permissions and activities from the APK badapk.apk.

As seen in Fig. 6, the permissions of the APK Asteroides.apk request access to

information storage and Internet access, are the permissions of a video game that

writes the scores obtained in the memory of the device and that has the capacity to

106

Luis Enrique Héctor Almaraz García, Eleazar Aguirre Anaya, et al.

Research in Computing Science 138 (2017) ISSN 1870-4069

access the Internet. Also, in Fig. 6, provides an overview of the activities that the user

will see on the screen.

In the case of APK with malware, Armagedroid extracted the permissions of Fig.

7, in total there are 23, ranging from the request for Internet access, Wi-Fi network

state settings, user location, reading of your contacts, control over the sending and

receipt of both messages and phone calls, access to the camera and the microphone, to

change the background image of the device and write to memory. The software

detected a single activity, represented in Fig. 7, suggesting to the user that the APK is

analyzed, that it is a main activity that runs in the background avoiding raising

suspicions about their work.

6 Conclusions and future scope

Thanks to the implementation of Armagedroid, it was possible to create a tool that

automates the task of decompiling the APK, to extract its metadata, its directories and

files, procedures proper to a static analysis, the results of comparing a benign APK

with a malware resulted in a large difference in the permissions requested by the

malicious application as it requested a set of permissions on the configuration of the

wireless network, as well as the Internet, access to calls, messages and contacts on the

phone, also to write information in memory, manipulate the device's camera and

microphone, all give full scope to the tasks of the Android operating system and give

access to a cybercriminal to manipulate it.

As for benign APK, only two permissions were written in memory and Internet

access, which gives an idea that the application is what it claims to be, a video game.

An important point to say is that the tool does not yet predict probabilistically if the

APK is malware or benign, but only assists in the decision making, through the

obtained metadata, to the analyst user.

To get the APK valuation task, Armagedroid will be attached to the Garmdroid

web application, developed in the Cyber Security laboratory of the Computer

Research Center, which informs the user if the APK it analyzes is malware or benign.

Due to this interaction with the web platform, a communication component will be

created between both softwares, both Armagedroid and Garmdroid. In future tests

Armagedroid will be applied to a malware database of APKs to know the

characteristics that it obtains from them.

Aknowledgements. We thank the Instituto Politécnico Nacional and CONACyT who

have made possible the development of the Armagedroid project, both in support of

the necessary resources and in the provision of facilities for the realization of it.

References

1. Neely L.: Exploits at the Endpoint: SANS 2016 Threat Landscape Survey. (2016)

107

Armagedroid, APKs Static Analyzer Software

Research in Computing Science 138 (2017)ISSN 1870-4069

2. Universidad Internacional de Valencia: Ciberseguridad: Tendencias 2017. Jun 6, 2011,

from Universidad Internacional from Valencia (2011)

3. Case A., Golden R.: Advancing Mac OS X Rootkit Detection. In: Digital Forensic

Research Conference (2015)

4. Dunham K., Hartman S., Morales J., Quintans M., Strazzere T.: Android Malware and

Analysis. E.U.: Auerbach Publications, pp. 7, 51, 52, 91, 92 (2014)

5. Lueg, C.: 8,400 new Android malware samples every day. April 27, 2017, from G DATA.

https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-

samples-every-day, last accessed 2017/08/14 (2017)

6. Elenkov N.: Android Security Internals: An In-Depth Guide to Android’s Security

Architecture. San Francisco, No Starch Press, pp. 51–52 (2014)

7. Elenkov N.: Android Security Internals: An In-Depth Guide to Android’s Security

Architecture. San Francisco, No Starch Press, pp. 51–52 (2014)

8. Developers Android: App Manifest, Developers Android. https://developer.android.com/

guide/topics/manifest/manifest-intro.html, last accessed 2017/08/14

9. Developers Android: Package, Developers Android, https://developer.android.com/

reference/java/lang/Package.html, last accessed 2017/08/14

10. Elenkov N.: Android Security Internals: An In-Depth Guide to Android’s Security

Architecture. San Francisco, No Starch Press, pp. 21–26 (2014)

11. Developers Android: Activities. December 4, 2016, https://developer.android.com/guide/

components/activities.html, last accessed 2017/08/14

12. Zuhair, M., Nisar, A., Ullah, H.: Automatic Feature Extraction, Categorization and

Detection of Malicious Code in Android Applications. Institute of Advanced Engineering

and Science (2013)

13. Aung, Z., Zaw, W.: Permission-Based Android Malware Detection. March 3, 2013, from

International Journal of Scientific & Technology Research (2013)

14. Allix K, Bissyandé T, Jérome Q, Klein J, State R, Le Traon Y. Large-Scale Machine

Learning-based Malware Detection: Confronting the 10-Fold Cross Validation Scheme

with Reality.University of Luxembourg (2014)

108

Luis Enrique Héctor Almaraz García, Eleazar Aguirre Anaya, et al.

Research in Computing Science 138 (2017) ISSN 1870-4069

https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/guide/

